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Abstract—A novel millimeter-wave packaging structure was b?%*g:g;ﬂf:g 2nd Silicon Substrate
developed in which a micromachined low-loss planar component
and flip-chip devices were integrated on a silicon substrate. A
low-loss planar filter was achieved on a 7-mm-square silicon
substrate employing an inverted microstrip line and a unique
resonator. High attenuation in the stopband was also obtained by GaAs Devices Dual Mode Filter on the
introducing a pole control technique. Fabrication of a compact (Flip-Chip Bonding) inverted Microstrip

K-band receiver front-end incorporating a built-in filter was
realized using multilayered benzocyclobutene (BCB) and flip-chip  myi-Layered
bonding techniques. Furthermore, we propose an alternative BCB
BCB suspended structure and demonstrate a planar antenna

for Ka-band applications. These technologies bring to reality
high-performance compact packaged systems in millimeter-wave

region applications.

Index Terms—BCB, flip-chip, inverted microstrip, microma-
chining, silicon, suspended line.

. INTRODUCTION 1st Silicon Substrate

ECENTLY, the demand for broad-band microwaveig 1. cross-sectional view of the proposed packaging structure for
and millimeter-wave communication systems has beerillimeter-wave radio systems using micromachining technology.
rapidly increasing. Low-loss passive components are required
in a planar structure and, as such, a number of micromachirfegjuency-control methodology for the dual-mode resonator
structures employing anisotropic etching have been proposedlized high attenuation in the target frequency. In Section 1V,
[1], [2]. The current hurdle is how to combine active aneé K-band receiver front-end hybrid integrated circuit (HIC)
passive devices into a single package. New proposals &smonstrates the application of multilayered benzocyclobutene
flip-chip bonding on a silicon substrate incorporating dielectri@BCB) and flip-chip bonding techniques in the developed filter.
multilayer thin films have been reported [3]-[5]. HoweverFurthermore, we propose a micromachined BCB membrane
problems still remain in the fabrication of low-loss planar conmstructure as an alternative packaging structure Kar-band
ponents on silicon for completely integrated compact packagagplications in Section V. ACa-band circular polarized patch
systems. In order to realize built-in low-loss componentantenna on the membrane structure was successfully developed.
we successfully developed A-band filter [6] and antenna
[7] employing a quartz substrate. This paper describes a newl. THREEDIMENSIONAL MILLIMETER-WAVE PACKAGING
packaging structure on a micromachined silicon substrate con- STRUCTURE USING SILICON MICROMACHINING
taining low-loss planar components (proposed in Section II).

Adoption of an inverted microstrip line (IMSL) using silicon Fig. 1 shows a cross-sectional view of the proposed three-

deep trench etching enabled us to realize a built-in IOW_lodimensional millimeter-wave integrated-circuit (IC) structure.
P g ultilayered BCB was formed on the first silicon substrate. Pas-

filter on silicon. In Section I, the inverted microstrip-line _. ) . L

- . . . ) ive elements, such as filters and matching circuits that can be
characteristics are discussed in detail and a planar filter on the . . !

) X ._formed into each layer, and active devices were assembled on
inverted structure is demonstrated. Low-loss characterlst% S

were achieved employing a dual-mode ring (DMR) resonatal . top Iay_er using .ﬂ'p ch_|p bonding tech_n_ology. _In the filter
) " o Section, micromachined silicon (second silicon) with a ground
[9], [10] fabricated completely from silicon. In addition, pole . . !
metal-filled shallow cavity was used to cover the filter pattern.

The illustrated packaging structure is basically a three-dimen-
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Fig. 2. Cross-sectional view of the proposed IMSL on silicon. e '
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Fig. 4. Calculated IMSL transmission loss with variation in air-gap thickness.
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Fig. 3. Calculated results of the IMSL transmission loss compared to a
conventional MSL using the same silicon substrate.
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characteristics are essential for the filter. In reducing the losg. 5. Circuit schematic of a DMR filter.
found with silicon, an inverted structure can be considered since

air is an ideal loss-free material. mission loss can be reduced for the IMSL in comparison with

conventional MSL lines. This is because a portion of the EM
field propagates through the air gap. A calculated transmission
A. IMSL Structure loss of 0.6 dB/cm at 25 GHz was obtained for the IMSL.

Fig. 2 shows the cross-sectional view of the proposed trans-Flg' 4 shows the calculated results for varying air-gap thick-

Coe : . ; S . ness. The transmission loss increased significantly when the air
mission line using silicon micromachining. The transmission

. . . - . was less than 1Q6n, though the effective permittivity was
line consists of two silicon substrates: a silicon substrate (fn%?p Qon 9 P Y

" : R [ow. The reason for this is that conductor loss increases signifi-
silicon) on which the transmission line is patterned, and a mi-

cromachined silicon substrate (second silicon) with a shall cantly since the EM field is concentrated on the edge of the line.

. lecti f th i i h f f RF
metal-covered cavity. The two substrates are bonded together ?oectlon of the optimum air gap then becomes a factor o

produce the IMSL structure. The IMSL structure utilizes the a]lcrharactenstlcs and productivity. A 29w air gap was selected

gap formed between the line and cavity to obtain a low transo-r the following planar components.
mission loss owing to the application of air. E DMR FEilter

Fig. 3 compares the calculated transmission loss of the IMSL o )
against a conventional microstrip line (MSL) in a 38f+-thick The above results clearly indicated that low-loss characteris-
silicon substrate. A commercial electromagnetic (EM) simdlcs could be obtained, leading us to our next goal of realizing
lator-based ém Sonnet Software, Liverpool, NY) method of@ low-loss circuit configuration within the filter itself. Thus, a
moments (MoM) was applied in this calculation. Calculation@MR filter, as shown in Fig. 5, was newly adopted. The most
were obtained from the following to exclude the influence gfseful feature of the DMR filter is the inherently low radiation

lll. SILICON MICROMACHINED PLANAR COMPONENTS

the return loss: loss, an important factor in simplifying shield structure com-
plexity, since there are no open ends in the ring shape. Another
LOSS = ‘10 log (|S11/* + 521/%) ‘ dB. (1) featureisthe inclusion of two attenuation poles on the upper and

lower sides of the passband where high attenuation in the stop-

Both transmission lines were formed on the same dielecthiand can be easily obtained in a few stages. In order to couple
substrate, and the cavity depth for the IMSL was fixed dtetween the two orthogonal resonance modes in the ring res-
200 m, as described below. The results show that the trarmiator, a point of perturbation should be located on the resonator
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Fig. 6. Frequency shift of the attenuation poles from varying the electricg}) Micromachined cavity as ground plane.
length off,.

symmetrically between the input and output ports. The attenua-
tion poles are expected to appear under the following conditions: )
By — 6, = 180° ) &
wheref1 and 62 are the electrical lengths between both ports @
(61 < 62). Whenf; = 90°, the attenuation pole frequency
Jpole Can be derived from the following equation [10]: . . . .
5 . 5 5 20 22 24 26 28 30
sin(gf;)) +Sin<§90f]’)> K sin? <290f]’)> tan <290f]’,> Frequency [GHz]
=0 Fig. 8. Measured frequency response of the fabricated 25-GHz
Frol micromachined filter.
f/ _ pole
P o
VA RF INPUT
Kz=7" ©) ‘-
Zo

where fj is the resonant frequency of the ring resonafgris

the half electrical length of the ring resonatgy, is the charac-
teristic impedance of the ring resonatdg; is the characteristic
impedance of the open-ended stub whErgis the impedance
ratio between the MSL of the resonator and the open-ended stub.
The relation in (2) implies that the pole frequency will rise in
accordance to an enlarg@g, due to a decrease in electrical .
length between the two different paths of both pofts{6;). To IF OUTPUT

anf'rm this assumption, _the pole frequencies W,ere_ca.lcmatﬁg. 9. Block diagram of the 25-GHz receiver front-end IC incorporating a
with 8, as a parameter using a general-purpose circuit simulag@&romachined filter.

with coupling to both ports. The calculated pole frequencies are

sh_own in Fig. 6. The resu_lts prqved that the pole_frequency Wﬁgnt—end IC. Microwave and monolithic millimeter-wave
shifted upward by enlarging without fluctuation in passband integrated circuits (MMICs) were employed for the amplifiers

frequency. Here, we intentionally designed the pole frequenagw_noise amplifiers and a local amplifier) and a discrete pseu-

by adjustingd;, to suppress the local-oscillator (LO) signal lo- o i I : R
cated 1.72 GHz below the RF signal (25.0 GHz). A photograp%)morphIC high electron-mobility transistor (p-HEMT) was

. . applied for the down converter, respectively. All components
of the developed filter and experimental results are shown i : : T
. . L were incorporated into an overall chip size of 111 mn?,
Figs. 7 and 8, respectively. The chip size was 7 mrid mm,

. . as shown in Fig. 10. A maximum overall conversion gain of
center frequency designed at 25.0 GHz, passband width dB was obtgined while noise figure was less tha% 4 dB
over 500 MHz, and the insertion loss of the passband was Iei%s ’ ’

. ese results showed minimal degradation from their expected
tsr[]aimsléorgfe. ;:s(l)%lz;tgg unioaded(Qr) from the filter re- performance. Frequency characteristics are shown in Fig. 11.

The measured overall conversion gain agrees well with that

calculated from the characteristics of each individual unit.

Though a ripple of about 2 dB or more was observed in the
Applying the above-mentioned technologies, we designéesired band (25.0 GH250 MHz), the DMR filter displayed

and fabricated & -band front-end IC incorporating a microma-sufficient suppression at its designed stopband, i.e., a suppres-

chined RF filter. Fig. 9 shows a block diagram of the receivesion of above 28 dB at 22.8 GHz. The ripple near the passband

IV. RECEIVERFRONT-END IC WITH MICROMACHINED FILTER
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Fig. 12. Alternative packaging structure using a micromachined BCB
membrane structure.
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was caused by the down-converter characteristics itself since
the drain LO injection mixer has narrow-band characteristics.

-
[9)]
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V. BCB SUSPENDEDSTRUCTURE FORALTERNATIVE
PACKAGING STRUCTURE

A. BCB Suspended Structure

Transmission Loss [dB/cm]

05} g

Additional low-loss characteristics are required in higher fre- /

guency-band applications, such &S:- or V-bands. Fig. 12 ——’/"B’gm

shows an alternative packaging layout for a millimeter-wave 010 1520 25 30 35 40
IC incorporating a BCB membrane structure. The membrane Frequency [GHz]

structure is very effective in eliminating the effect of the sil-
icon. Additional bottom trench etching of the base silicon sulfig. 13. Calculated transmission loss as a parameter of silicon thickness (0
strate (first silicon) can easily achieve such a structure. TRENckness (T) means that he BCB is suspended).

planar components were suspended on a:20BCB mem-

brane. This structure allows high-performance planar comp Transition /5°Q°PW
nents to be formed on the silicon monolithically eveniim- 444 ,

or V-bands. As shown in Fig. 13, a transmission loss of 0.3 dsuspended |
was calculated for a 1-cm length of the BCB suspended stru i §

Return Loss [dB]
8

ture with a 200sm air gap at 40 GHz. The transmission loss 3 (&
was reduced to one-quarter or less for an IMSL on a 380- -30 0,8
™ . . . . ©  measured o
silicon configuration with a 20Q+m air gap. — catcuated
; o ’ 5 -40 * =2 :
B. Planar Components e 35 37 39 41 43
As one of the applications of the suspended structure, Frequency [GHz]
Ka-band patch antenna was developed. Low-loss charac- (@) (b)

teristics of the suspended line can be expected realizing-& 14 Fabricatedsa-band patch antenna using a micromachined BCB
high-efficiency antenna. Patch antennas are the most simglepended structure. (a) Photograph. (b) Impedance characteristics.
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and easy to design. We designed a circular polarized patcho] H. Yabuki, M. Sagawa, M. Matsuo, and M. Makimoto, “Stripline

antenna with a single radiation element containing two orthog-

dual-mode ring resonators and their application to microwave devices,”

. . IEEE Trans. Microwave Theory Teckol. 44, pp. 723-729, May 1996.
onal resonance modes, as shown in Fig. 14(a). Broad'barEPO] M. Matsuo, H. Yabuki, M. Sagawa, and M. Makimoto, “Analysis of res-

characteristics can be achieved by applying a BCB suspended
structure to the resonator-type antenna because the permittivity
is close to that of air. The developed patch antenna achieved a
bandwidth of 6.7%, as shown in Fig. 14(b).

VI. CONCLUSIONS

We have proposed a new packaging structure adopting ¢
icon micromachining for millimeter-wave radio communica
tions. A micromachined IMSL enabled us to realize low-los
planar components on silicon in millimeter-wave bands. A higl
performanceK-band filter was realized on compact silicon
7 mm x 7 mm, employing unique DMR and pole frequenc‘
methodologies. A fabricatedt -band receiver front-end IC in-

onant characteristics for a one-wavelength ring resonator coupled with
two orthogonal resonant modesEICE Trans. Electron.vol. J1-C-1,
no. 10, pp. 590-598, Oct. 1998.
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